

NOWCASTING MALAYSIA'S GDP WITH MACHINE LEARNING

Siti Khadijah Jasni; Fatin Ezzati Mohd Aris; Veronica S. Jamilat

To identify a new potential approach in nowcasting Malaysia's GDP using machine learning (ML) & to complement the existing method in producing Malaysia's GDP advance estimates.

Abstract. This paper describes recent work to strengthen the nowcasting capacity at the Department of Statistics Malaysia. It motivates and compiles datasets of microeconomic variables. It applies several machine learning (ML) algorithms to nowcast Malaysia's GDP growth during normal and crisis times. ML models significantly outperform the AR (1) benchmark model. Some of the models tend to perform better during normal times while two ML models: XG Boost and Random Forest performed better at identifying turning points. Our approach is easily applicable to other countries and subject to data availability.

Related Wo	rks.	Selected ML Models	Best Model			
United Kingdom	L	ASSO, MIDAS, Random Forest, SVM, Neural Net, LSTM, DFM	LASSO			
Canada	SVM, D	SVM, DFM, Elastic Net, Random Forest, and Gradient Boosting				
China	Ridg a	Ridge				
USA	LSTN F	4, Bayesian VAR, Ridge, MIDAS, MLP, Random Forest, DFM, Gradient Boost, Decision Tree, MF-VAR	LSTM & Bayesian VAR			

Contributions. It adds to the growing literature on nowcasting several ways. First, it motivates and compiles datasets over 111 ariables consisting of indexes, SITC-single digit code, services, banking, xchange rate and labour market data. Second, employ 11 ML algorithms nowcast GDP growth. Third, the paper compares the performance of algorithms in dealing with and capturing extreme signal (s) by xperimenting with different time frames

> **Full data:** Q12005 - Q42021 **COVID-19 exclude vaccination rollout:** Q12020 – Q12021 **COVID-19 include vaccination rollout:** Q12021 – Q42021

Methodology

Recallibr

	Refinement				
\checkmark					
ation/reinterpolation					

Results

With colling	Q1,2005	-Q4,2021	Q1,2020-Q1,2021 Q1,2021-Q4,2021		Q1,2021 Q1,2021-Q4,2021		
with rolling	RMSE	MAE	RMSE	MAE	RMSE	MAE	
AR	5.86	3.68	6.64	3.52	5.17	2.68	Model performance
XG Boost	5.41	4.07	5.14	3.49	4.92	3.73	improves when
Random Forest	5.45	4.21	5.93	3.92	5.28	3.84	window method
Prophet	6.24	3.89	7.10	4.46	5.45	3.55	
Light GBM	6.48	4.18	6.95	4.29	4.86	3.67	The top two models
Elastic Net	6.53	4.67	7.59	4.88	5.74	4.94	with RMSEs lower t
Lasso	6.64	4.67	7.51	4.84	5.53	4.69	the AR benchmark a
LSTM	6.69	4.63	7.59	4.84	6.34	4.98	XG Boost an
SVM	6.71	4.76	7.42	4.81	5.62	4.49	Random
Decision Tree	6.73	4.73	7.63	4.93	5.84	4.89	Forest
Ridge	6.78	4.99	7.49	5.26	5.82	4.67	I UI CSL.
KNN	6.90	4.84	7.41	4.56	5.52	4.25	
Lowest				Highest			!!!
15							
					BEFOR	E COVI	D-19
10	_		\sum				
5	south	mand	M	$\sim \sim$		The	
			-	· · · ·		an Andre	WWWWWWWWWWW

B Covid-19 include

XG Boost Train

Forecasted

vaccination rollout

XG Boost Predicted &

the rolling nethod. wo models Es lower than enchmark are ost and

OREC

AS

)m

ML

4.7 – 5.4

3.5 – 4.9

Q1 2020

2021 Q1 2021 Q4

GDPGR

Q1

Actual GDP

5.0

8.9

- ML models outperformed benchmark model (AR) in nowcasting Malaysia's GDP.
- **XGBoost & Random Forest** perform better than other ML models with shorter time series datasets and they are able to capture extreme values or uncertainties in Malaysia's GDP.
- The use of ML algorithms is indispensable in giving **innovative solutions** to complement the existing method in producing Malaysia's GDP advance estimates.
- 1. Nakazawa, T. (2022). Constructing GDP Nowcasting Models Using Alternative Data. Bank of Japan.
- 2. Galvão, A. B., & Lopresto, M. (2020). Real-time Probabilistic Nowcasts of UK Quarterly GDP Growth using a Mixed-Frequency Bottom-up Approach. National Institute Economic Review, 254, R1–R11.

Light GBM

XG Boost

LASSO

- 3. Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International Journal of Forecasting, 37(2), 941–948
- 4. Dauphin, M. J.-F., Dybczak, M. K., Maneely, M., Sanjani, M. T., Suphaphiphat, M. N., Wang, Y., & Zhang, H. (2022). Nowcasting GDP-A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies. International Monetary Fund. 5. Dauphin, M. J.-F., Dybczak, M. K., Maneely, M., Sanjani, M. T., Suphaphiphat, M. N., Wang, Y., & Zhang, H. (2022). Nowcasting GDP-A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies. International Monetary Fund.

Notes:

A Covid-19 exclude

RF Predicted &

Forecasted

RF Train

vaccination rollout

